Synthesis and mobilization of flagellar glycoproteins during regeneration in Euglena

نویسندگان

  • M Geetha-Habib
  • G B Bouck
چکیده

Flagellar glycoprotein synthesis and mobilization of flagellar glycoprotein pools have been followed during flagellar regeneration in Euglena. The glycosylation inhibitor tunicamycin has little effect on either regeneration kinetics or the complement of flagellar peptides as seen in SDS acrylamide gels, but tunicamycin totally inhibits incorporation of exogenously supplied [14C]xylose into flagellar glycoproteins. Moreover, deflagellated cells pulsed with tunicamycin for 0 min or more, regenerated for 180 min, and then redeflagellated are completely or partially inhibited from undergoing a second regeneration even when tunicamycin is no longer present. These facts are interpreted as indicating that Euglena retains sufficient glycoprotein pool for one complete flagellar assembly. Some of this pool is present on the cell surface since [125I]-labeled surface peptides can be chased into the regenerating flagellum. Glycosylation may also be taking place in the flagellum directly because [14C]xylose has been found in three flagellar fractions: glycoprotein and two others, which are lipophilic and have properties similar to those described for lipid-carrier glycoprotein intermediates in other systems. Pulse-chase experiments also suggest a precursor-product relationship between the presumptive lipid carriers and flagellar glycoproteins. From these results a model is postulated in which Euglena is visualized as retaining sufficient pool of glycoprotein for one complete flagellar regeneration, but the pool is normally supplemented by active xylosylation in situ during regeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flagellar surface antigens in Euglena: immunological evidence for an external glycoprotein pool and its transfer to the regenerating flagellum

Antibodies raised against the Sarkosyl-insoluble, major flagellar glycoprotein fraction, mastigonemes, were used to determine the source of flagellar surface glycoproteins and to define the general properties of flagellar surface assembly in Euglena. After suitable absorption, mastigoneme antiserum reacts with several specific mastigoneme glycoproteins but does not bind either to the other majo...

متن کامل

Flagellar Regeneration in Protozoan Flagellates

The flagella of populations of three protozoan species (Ochromonas, Euglena, and Astasia) were amputated and allowed to regenerate. The kinetics of regeneration in all species were characterized by a lag phase during which there was no apparent flagellar elongation; this phase was followed by elongation at a rate which constantly decelerated as the original length was regained. Inhibition by cy...

متن کامل

Characterization and localization of a flagellar-specific membrane glycoprotein in Euglena

Purified flagella from Euglena yield a unique high molecular weight glycoprotein when treated with low concentrations of nonionic detergents. This glycoprotein termed "xyloglycorien" cannot be extracted from other regions of the cell, although a minor component that coextracts with xyloglycorien does have a counterpart in deflagellated cell bodies. Xyloglycorien is tentatively identified with a...

متن کامل

Rapid changes in tubulin RNA synthesis and stability induced by deflagellation in Chlamydomonas

Detachment of the flagella of Chlamydomonas induces a rapid accumulation of mRNAs for tubulin and other flagellar proteins. Measurement of the rate of alpha and beta tubulin RNA synthesis during flagellar regeneration shows that deflagellation elicits a rapid, 4-7-fold burst in tubulin RNA synthesis. The synthesis rate peaks within 10-15 min, then declines back to the predeflagellation rate. Re...

متن کامل

Flagellar elongation and shortening in Chlamydomonas. IV. Effects of flagellar detachment, regeneration, and resorption on the induction of flagellar protein synthesis

Synthesis of new proteins is required to regenerate full length Chlamydomonas flagella after deflagellation. Using gametes, which have a low basal level of protein synthesis, it has been possible to label and detect the synthesis of many flagellar proteins in whole cells. The deflagellation-induced synthesis of the tubulins, dyneins, the flagellar membrane protein, and at least 20 other protein...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 93  شماره 

صفحات  -

تاریخ انتشار 1982